Материалы || Новости || СИРИУС || Конференция || Голосование || Ресурсы || Блог

Основы теории нейроподобных сетей

Некоторые сведения о мозге

Мозг является, пожалуй, самой сложной из известных нам систем переработки информации. Достаточно сказать, что в нем содержится около 100 миллиардов нейронов, каждый из которых имеет в среднем 10 000 связей. При этом мозг чрезвычайно надежен: ежедневно погибает большое количество нейронов, а мозг продолжает функционировать. Обработка огромных объемов информации осуществляется мозгом очень быстро, за доли секунды, несмотря на то, что нейрон является медленнодействующим элементом со временем реакции не менее нескольких миллисекунд.
Пока не слишком понятно, как мозгу удается получить столь впечатляющее сочетание надежности и быстродействия. Довольно хорошо изучена структура и функции отдельных нейронов, имеются данные об организации внутренних и внешних связей между нейронами некоторых структурных образований мозга, совсем мало известно об участии различных структур в процессах переработки информации.
Ниже приводятся некоторые сведения об устройстве и работе нервной системы, которые используются при построении моделей нейронных сетей.

Нейрон

Нервные клетки, или нейроны, представляют собой особый вид клеток в живых организмах, обладающих электрической активностью, основное назначение которых заключается в оперативном управлении организмом. Схематическое изображение нейрона приведено на рисунке.

image001.png (4819 bytes)Нейрон имеет тело (сому) 1, дерево входов (дендриты) 4 и выходов (аксон и его окончания) 2. Сома, как правило, имеет поперечный размер в несколько десятков микрон. Длина дендритов может достигать 1 мм, дендриты сильно ветвятся, пронизывая сравнительно большое пространство в окрестности нейрона. Длина аксона может достигать сотен миллиметров. Начальный сегмент аксона 3, прилегающий к телу клетки, утолщен. Иногда этот сегмент называют аксонным холмиком. По мере удаления от клетки он постепенно сужается и на расстоянии нескольких десятков микрон на нем появляется миэлиновая оболочка, имеющая высокое электрическое сопротивление. На соме и на дендритах располагаются окончания (коллатерали) аксонов, идущих от других нервных клеток. Каждое такое окончание J имеет вид утолщения, называемого синаптической бляшкой, или синапсом. Поперечные размеры синапса, как правило, не превышают нескольких микрон, чаще всего эти размеры составляют около 1 мкм.
Входные сигналы дендритного дерева (постсинаптические потенциалы) взвешиваются и суммируются на пути к аксонному холмику, где генерируется выходной импульс (спайк) или пачка импульсов. Его наличие (или интенсивность), следовательно, является функцией взвешенной суммы входных сигналов. Выходной сигнал проходит по ветвям аксона и достигает синапсов, которые соединяют аксоны с дендритными деревьями других нейронов. Через синапсы сигнал трансформируется в новый входной сигнал для смежных нейронов. Этот входной сигнал может быть положительным и отрицательным (возбуждающим или тормозящим) в зависимости от вида синапсов. Величина входного сигнала, генерируемого синапсом, может быть различной даже при одинаковой величине сигнала, приходящего в синапс. Эти различия определяются эффективностью или весом синапса. Синаптический вес может изменяться в процессе функционирования синапса. Многие ученые считают такое изменение нейрофизиологическим коррелятом (следом) памяти. При этом роль механизмов молекулярной памяти заключается в долговременном закреплении этих следов.
Нейроны можно разбить на три большие группы: рецепторные, промежуточные и эффекторные. Рецепторные нейроны обеспечивают ввод в мозг сенсорной информации. Они трансформируют сигналы, поступающие на органы чувств (оптические сигналы в сетчатке глаза, акустические в ушной улитке или обонятельные в хеморецепторах носа), в электрическую импульсацию своих аксонов. Эффекторные нейроны передают приходящие на них сигналы исполнительным органам. На конце их аксонов имеются специальные синаптические соединения с исполнительными органами, например мышцами, где возбуждение нейронов трансформируется в сокращения мышц. Промежуточные нейроны осуществляют обработку информации, получаемой от рецепторов, и формируют управляющие сигналы для эффекторов. Они образуют центральную нервную систему.
О строении мозга.
Головной мозг человека и высших животных состоит из серого и белого вещества. Серое вещество image003.png (11389 bytes)представляет собой сеть дендритов, аксонов и тел нервных клеток. Миэлинизированные волокна, соединяющие различные области мозга друг с другом, с органами чувств и мускулами, образуют белое вещество.
В мозге существуют структурно обособленные отделы, такие, как кора, гиппокамп, таламус, мозжечок, миндалина, полосатое тело и т. д. Каждый из отделов, в свою очередь, имеет сложное модульное строение. Особое место в мозге зажимает церебральная кора. Она образует поверхность мозга, она также является его новейшей частью. Считается, что именно здесь происходят важнейшие процессы ассоциативной переработки информации.

О моделировании нейронных сетей
Уровни моделирования и терминология.
Моделирование функций нервной системы производится на разных уровнях организации и абстракции. Можно выделить следующие категории моделей: отдельных нейронов, небольших групп нейронов, нейронных сетей, нервной системы, мыслительной деятельности и мозга в целом. Далее будем рассматривать модели уровня нейронных сетей, состоящие из большого количества взаимосвязанных моделей нейронов. При этом акцент делается не на тщательной имитации свойств нейрона с целью исследования его динамических и адаптивных характеристик (как это имеет место на уровне моделирования отдельных нейронов), а на коллективных эффектах, возникающих при объединении большого числа нейроподобных элементов. Основная роль здесь отводится структуре межнейронных связей, что позволяет использовать простые модели нейронов и моделировать достаточно большие сети.
В дальнейшем при рассмотрении различных моделей нейронных сетей мы будем, придерживаясь терминологии различных авторов, называть их также «искусственные нейронные сети», «нейроподобные сети» или просто «нейронные сети». Модель нейрона принято называть также «нейроподобный элемент», «искусственный нейрон», «блок», «узел» или просто «нейрон».

Нейроподобный элемент.

Нейроподобный элемент, который обычно используется при моделировании нейронных сетей, приведен на рисунке ниже. На нейроподобный элемент поступает набор входных сигналов x1 ... хм (или входной вектор image006.gif (190 bytes)), image007.gif (1530 bytes)представляющий собой выходные сигналы других нейроподобных элементов. Этот входной вектор соответствует сигналам, поступающим в синапсы биологических нейронов. Каждый входной сигнал умножается на соответствующий вес связи w1…wm -аналог эффективности синапса. Вес связи является скалярной величиной, положительной для возбуждающих и отрицательной для тормозящих связей. Взвешенные весами связей входные сигналы поступают на блок суммации, соответствующий телу клетки, где осуществляется их алгебраическая суммация и определяется уровень возбуждения нейроподобного элемента S:
image009.gif (430 bytes) (1)
Выходной сигнал нейрона у определяется путем пропускания уровня возбуждения S через нелинейную функцию f :
image011.gif (372 bytes) (2)
где
и - некоторое постоянное смещение (аналог порога нейрона). Обычно используются простейшие нелинейные функции:

бинарная
image012.png (1497 bytes)image015.gif (583 bytes) (3)




 

или сигмоидная:
image016.png (1754 bytes)image019.gif (397 bytes) (4)

 

В такой модели нейрона пренебрегают многими известными характеристиками биологического прототипа, которые некоторые исследователи считают критическими. Например, в ней не учитывают нелинейность пространственно-временной суммации, которая особенно проявляется для сигналов, приходящих по возбуждающим и тормозящим синапсам, различного рода временные задержки, эффекты синхронизации и частотной модуляции, рефрактерность и т. п. Несмотря на это нейроподобные сети, простроенные на основе таких простых нейроподобных элементов, демонстрируют ассоциативные свойства, напоминающие свойства биологических систем.

Нейроподобная сеть

Нейроподобная сеть представляет собой совокупность нейроподобных элементов, определенным образом соединенных друг с другом и с внешней средой. Входной вектор (кодирующий входное воздействие или образ внешней среды) подается на сеть путем активации входных нейроподобных элементов. Множество выходных сигналов нейронов сети y1ум называют вектором выходной активности, или паттерном активности нейронной сети. Веса связей нейронов сети удобно представлять в виде матрицы W, где Wij - вес связи между i- и j-м нейронами. В процессе функционирования (эволюции состояния) сети осуществляется преобразование входного вектора в выходной, т. е. некоторая переработка информации, которую можно интерпретировать, например, как функцию гетеро- или авто- ассоциативной памяти. Конкретный вид выполняемого сетью преобразования информации обусловливается не только характеристиками нейроподобных элементов, но и особенностями ее архитектуры, т. е. той или иной топологией межнейронных связей, выбором определенных подмножеств нейроподобных элементов для ввода и вывода информации, наличием или отсутствием конкуренции, направлением и способами управления и синхронизации информационных потоков между нейронами и т. д.

Обучение нейроподобной сети

Одно из важнейших свойств нейроподобной сети - способность к самоорганизации, самоадаптации с целью улучшения качества функционирования. Это достигается обучением сети, алгоритм которого задается набором обучающих правил. Обучающие правила определяют, каким образом изменяются связи в ответ на входное воздействие. Многие из них являются развитием высказанной Д. О. Хеббом идеи о том, что обучение основано на увеличении силы связи (синаптического веса) между одновременно активными нейронами. Таким образом, часто используемые в сети связи усиливаются, что объясняет феномен обучения путем повторения и привыкания. Математически это правило можно записать следующим образом:
image021.gif (540 bytes) (5)
где wij (t) и wij(t + 1) - значение веса связи от i-го к j-му нейрону соответственно до и после его изменения, б - скорость обучения. В настоящее время существует множество разнообразных обучающих правил (алгоритмов обучения). Некоторые из них будут представлены в параграфах, посвященных рассмотрению конкретных нейросетевых моделей.

Методы исследования нейроподобных сетей.

Для исследования построенной модели сети (с заданными характеристиками элементов, архитектурой и обучающими правилами) применяют три основных метода: аналитическое исследование, а также математическое (имитационное) и физическое моделирование. Сложность аналитического исследования рассматриваемых нами моделей с коллективным поведением обусловлена наличием большого числа взаимодействующих нелинейных нейроподобных элементов. Несмотря на это интересные аналитические результаты получены для многих из рассматриваемых далее моделей нейронных сетей, что в значительной степени способствовало их популярности.
Физическое моделирование позволяет быстро получать достоверные результаты работы модели, однако связано с технической сложностью аппаратной реализации большого количества нейроподобных элементов со многими адаптивными связями.
Математическое моделирование на универсальных ЭВМ дает возможность создать практически любые модели нейронных сетей, однако из-за последовательного характера их работы в обозримое время удается исследовать модели ограниченного размера. В настоящее время существуют и продолжают создаваться специальные вычислительные средства для эффективного моделирования больших нейроподобных сетей, а также реализованные в виде микросхем очень быстродействующие аппаратные модели небольших нейросетей.

БАЗОВЫЕ ЗНАНИЯ ПО НЕЙРОПОДОБНЫМ СЕТЯМ
Оглавление Введение

Основы теории

Модели сетей

SpyLOG


(c) redstar

Назад || Написать мне || Добавить комментарий || Обсудить на форуме



The new Internet search project.
Сайт создан в системе uCoz